That is, (ksinθ-8)/(- 1) = t/2, 2ksinθ =16-t.
Therefore, 16-t = 2ksinθ > 8sinθ, and if any θ range is 0 ≤ θ≤π/2, then 16-t > 8.
So t < 8, and the maximum value of tsinθ is 4, so t = 4.
When t=4, 2ksinθ= 16-t and ksinθ=6, so the vector AC = (-2,4), c (6,4).
So AC. OC=-2×6+4×4=4。
When t=-4, since 2ksinθ= 16-t and ksinθ= 10, the vector AC=(2, -4), C( 10, -4).
So AC. OC=2× 10+(-4)×(-4)=36。